热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NeurIPS2019|基于CoAttention和CoExcitation的少样本目标检测

论文提出CoAE少样本目标检测算法,该算法使用non-local block来提取目标图片与查询图片间的对应特征,使得RPN网络能够准确的获取对应类别对象的位置,另外使用类似SE block的sque

论文提出CoAE少样本目标检测算法,该算法使用non-local block来提取目标图片与查询图片间的对应特征,使得RPN网络能够准确的获取对应类别对象的位置,另外使用类似SE block的squeeze and co-excitation模块来根据查询图片加强对应的特征纬度,最后结合margin based ranking loss达到了state-of-the-art,论文创新点满满,值得一读

论文:One-Shot Object Detection with Co-Attention and Co-Excitation

论文地址:
代码地址:
Introduction

  论文认为,人类能够在图片中找出模版对应的物体,是因为人类具备将像素分组,提取独特特征比对以及专注定位的能力。因此,论文希望提出一个具备人类视觉功能的网络来解决one-shot目标检测的问题,给予网络一张未见过的查询模版(query image),然后在目标图片(taget image)中找出其位置。论文提出的one-shot目标检测算法的特征主要来自两种上下文信息:

目标图片能够提供空间上下文,对比其它前景物体和背景来找出特殊对象的位置
目标图片和查询图片能够提供类别上下文,而确切的类别层次则是由模版和目标对象的相同属性(颜色,纹理,形状等)决定的

  度量学习(Metric learning)是one-shot分类问题的关键,但不能直接简单地将学习到的度量方法应用到one-shot目标检测中,因为检测器需要先知道哪块区域最有可能包含目标才能进行比较。另外,目标追踪可以认为是少样本目标检测的一个特殊案例,区别在于,少样本目标检测的目标图片中不一定包含查询图片,并且允许图片之间存在明显的外观差异,只要他们有公共的特征进行归类即可。论文推出新的机制squeeze and co-excitation(CoAE)来同时强化新类别对象在查询图片和目标图片上的特征,实验证明,CoAE框架能更好地发掘空间和类别上下文信息,带来很好的性能提醒

Our method

  定义数据集的类别标签集合为$C$,进一步将其分为$C=C_0 \cup C_1$,分别用于训练和测试。少样本目标检测的流程定义为,给予查询图片$p$,为$C_1$集合的一个类别对象,测试就是查找目标图片$I$所有对应的对象,假设每张可用的图片包含至少一个查询对象

  论文的主要架构如1,主要包含4个部分,分别是前面的基础特征提取,然后是Non-local feature的提取,用于提取共同特征,接着是论文提出的squeeze and co-excitation(CoAE)模块,用于强化目标channel,最后是metric模块,用于最好的分类

Non-local object proposals

  定义训练集为$D$,包含$C_0$类别的bbox,论文采用Faster R-CNN架构进行检测,这会带来一个基础问题,即RPN能否检测出未训练过的类别($C_1$)的bbox。由于$C_1$类别与$C_0$类别可能存在十分明显的区别,因此,RPN不一定能检测出$C_1$的bbox。为了解决这个问题,论文引入non-local operation来优化卷积特征,non-local operation是一种类似attention的操作,能够根据参考输入来强化目标输入上的特征分布,具体可以看

  让$I$为目标图片,$p$为查询图片,目标图片的主干网络输出为$\phi(I) \in \mathbb{R}^{N \times W_I \times H_I}$,查询图片的输出为$\phi(p)\in \mathbb{R}^{N\times W_p\times H_p}$。将$\phi(p)$作为参考输入,$\phi(I)$的non-local block输出为$\varphi(I;p)\in \mathbb{R}^{N\times W_I\times H_I}$,同样的,以$\phi(I)$作为参考输入,可以得到$\phi(p)$的$\varphi(p;I)\in \mathbb{R}^{N\times W_p\times H_p}$,$I$和$p$之间的相互non-local operations可以认为进行co-attention机制

  两个扩展的特征图可以表示为公式1和公式2,$\bigoplus$是element-wise sum。由于$F(I)$不仅包含了目标图片的特征,还包含了$I$和$p$加权特征,所以将RPN接在这层特征上能够发现更多关于查询图片$p$的信息,从而获取更高质量的bbox,即non-local region proposals更适合少样本目标检测

Squeeze and co-excitation

  除了关联region proposals和查询图片外,co-attention机制产生了channel数一样的两组特征$F(I)$ $F(p)$,而这两组特征可以通过论文提出的squeeze-and-co-excitation(SCE)来根据查询图片$p$对N个channel进行自适应重新加权。具体地,squeeze步骤通过GAP(global average pooling)概括了每一个特征图,而co-excitation则同时对$F(I)$和$F(p)$进行channel纬度的特征加强,重点加强对最后相似度度量有用的特征。在squeeze层和co-excitation层之间,放置了两个fc/MLP层,跟SE block设计一样

  SCE operation如公式3,$\tilde{F}(p)$和$\tilde{F}(I)$为重新加强后的特征图,$w\in \mathbb{R}^N$是co-excitation向量,而$\bigodot$表示element-wise product

  通过公式3,查询图片$p$可以表示为公式4,同样RPN提取的区域特征$r$可以同样得出,例如对$\tilde{F}(I)$的裁剪区域进行channel-wise的GAP

Proposal ranking

  论文设计了一个两层MLP网络M,以二分类softmax结尾,RPN根据查询图片$p$选出K个bbox,K一般为128。在训练阶段,K个bbox会根据IoU是否大于0.5分成前景(label 1)和背景(label 0),接着使用margin-based ranking loss来指导度量学习,使得最相关的bbox出现在bbox列表的前面。因此,论文将每个bbox的特征向量$r$分别和查询图片特征$r$进行concatenate,标记为$x=[r^T; q^T]\in \mathbb{R}^{2N}$,网络M的层输出分布$2N\rightarrow 8\rightarrow 2$

  论文定义margin-based ranking loss为公式5,$s=M(x)$为前景的预测的置信度,$[ \cdot ]$为Iverson bracket,括号内为true则输出1,否则输出0,$m+$为前景的下限,$m-$为背景的上线,在实际中,一般分别设为0.7和0.3

  margin-based loss分为两部分,前部分为限制前景和背景的置信度,前景必须大于0.7,背景必须小于0.3,否则产生loss。而另一部分$\Delta$则是ranking的loss,初始的顺序是根据RPN的置信度输出。这里可以看出,论文没有设定真正意义的先后顺序,而是限制了正负样本间的置信度差,同类别样本间置信度差要小于0.3,而不同类别样本间置信度差则要大于0.7

  最后的总loss如公式7,前两个loss为交叉熵和Faster R-CNN的回归loss

Experiments

Datasets and hyperparameters

  Table1展示了VOC上的seen和unseen类别,而在COCO上,则对80个类进行4等分,然后随机选取3个作为seen类别,剩下一个为unseen类别,如图2所示。训练使用SGD优化器,momentum为0.9,训练10个周期,batch size为128,使用8块v100,学习率为0.01,每4个周期下降10倍,margin-based ranking loss的$\lambda=3$

Generating target and query pairs

  对于VOC,直接裁剪gt bbox作为查询图片,而对于COCO,由于目标太小且对于人也太难辨认,不能直接裁剪,因此,使用预训练的Mask R-CNN去掉过小和过难的目标。另外,实验仅使用Mask R-CNN检测出来的GT。在训练时,对于目标图片,随机获取图片上的seen类别作为查询图片。而在测试时,先使用图片ID作为种子,随机打乱查询图片的顺序,然后选取前五个查询图片,最后计算mAP。打乱顺序能保证获取的5个查询图片上随机的,从而保证验证结果上准确的

ImageNet pre-training

  为了保证实验的严格性,使用缩减后的ImageNet对ResNet-50进行重新训练,将COCO-related ImageNet类别去掉,大约933052张图片,剩下725类,精度top-1 75.8%,完整的ImageNet包含1284168张图片,共1000类

Overall performance

  对于VOC,Table1中可以看到,使用缩减的数据集训练的模型依然优于baseline模型,而使用完整的数据集训练的模型则是性能有很明显地提升。unseen类别性能比seen类别好,这是由于部分类别的对象差异较大,比如plant, bottle, chair

  对于COCO,Table2中可以看出,论文的模型在seen类别和unseen类别上优于Siamese Mask-RCNN

Ablation studies
Co-attention, co-excitation, and margin-based ranking loss

  论文研究了不同的策略的共享,如Table3。首先,不使用Co-attention和Co-excitation的模型表现最差,而分别单独加入non-local RPN和SCE在VOC和COCO上能分别能带来6.3/4.4mAP和9.8/8.2AP(%)提升,同时加入则分别进一步带来0.9/1.8mAP(%)和0.3/1.9AP(%)提升,这意味着co-attention和co-exciation对性能表现都很关键,而margin-based ranking loss也是很重要的

Visualizing the distribution of non-local object proposals

  为了分析non-local bbox的性能,将bbox分布以heatmap方式可视化, 如Figure3,co-attention模块让RPN更专注于查询图片的相似区域

Visualizing the characteristics of co-excitation

  为了分析co-excitation机制是否学习到了不同类别的权重分布,论文收集了测试时不同类别的查询图片的co-excitation权重,最后对其求平均得到类别的单一向量,再用欧式距离计算类别单一向量间的距离。从图4的结果可以看出,co-excitation模块学习到了有意义的权重分布,相似的物体的向量距离比较近,而person类别则远离其它所有类别,表明person类别的权重与其它类别基本不同

Analyzing the co-excitation mechanism

  论文进行了两个相反的实验,首先对同一张目标图片使用不同的查询图片,从图5的结果可以看出,p1和p2的颜色与目标相似,而p3和p4则截然不同,从结果来看,结论是前两张图片更注重颜色,而后两张则更注重形状特征。另外一个则是对不同的目标图片使用同一张查询图片,从图6结果可以看出,I1和I2更注重纹理而I3和I4更注重形状特征

Conclusion

  论文提出CoAE少样本目标检测算法能够根据查询图片提取对应的特征,不依赖于训练数据的标注信息,在COCO和VOC上达到state-of-the-art,未来的工作是将网络推广到k-shot(k$\ge$0)目标检测中

写作不易,未经允许不得转载~

更多内容请关注个人微信公众号【晓飞的算法工程笔记】


推荐阅读
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • Android中高级面试必知必会,积累总结
    本文介绍了Android中高级面试的必知必会内容,并总结了相关经验。文章指出,如今的Android市场对开发人员的要求更高,需要更专业的人才。同时,文章还给出了针对Android岗位的职责和要求,并提供了简历突出的建议。 ... [详细]
  • [译]技术公司十年经验的职场生涯回顾
    本文是一位在技术公司工作十年的职场人士对自己职业生涯的总结回顾。她的职业规划与众不同,令人深思又有趣。其中涉及到的内容有机器学习、创新创业以及引用了女性主义者在TED演讲中的部分讲义。文章表达了对职业生涯的愿望和希望,认为人类有能力不断改善自己。 ... [详细]
  • 云原生边缘计算之KubeEdge简介及功能特点
    本文介绍了云原生边缘计算中的KubeEdge系统,该系统是一个开源系统,用于将容器化应用程序编排功能扩展到Edge的主机。它基于Kubernetes构建,并为网络应用程序提供基础架构支持。同时,KubeEdge具有离线模式、基于Kubernetes的节点、群集、应用程序和设备管理、资源优化等特点。此外,KubeEdge还支持跨平台工作,在私有、公共和混合云中都可以运行。同时,KubeEdge还提供数据管理和数据分析管道引擎的支持。最后,本文还介绍了KubeEdge系统生成证书的方法。 ... [详细]
  • Webpack5内置处理图片资源的配置方法
    本文介绍了在Webpack5中处理图片资源的配置方法。在Webpack4中,我们需要使用file-loader和url-loader来处理图片资源,但是在Webpack5中,这两个Loader的功能已经被内置到Webpack中,我们只需要简单配置即可实现图片资源的处理。本文还介绍了一些常用的配置方法,如匹配不同类型的图片文件、设置输出路径等。通过本文的学习,读者可以快速掌握Webpack5处理图片资源的方法。 ... [详细]
  • CSS3选择器的使用方法详解,提高Web开发效率和精准度
    本文详细介绍了CSS3新增的选择器方法,包括属性选择器的使用。通过CSS3选择器,可以提高Web开发的效率和精准度,使得查找元素更加方便和快捷。同时,本文还对属性选择器的各种用法进行了详细解释,并给出了相应的代码示例。通过学习本文,读者可以更好地掌握CSS3选择器的使用方法,提升自己的Web开发能力。 ... [详细]
  • 本文主要解析了Open judge C16H问题中涉及到的Magical Balls的快速幂和逆元算法,并给出了问题的解析和解决方法。详细介绍了问题的背景和规则,并给出了相应的算法解析和实现步骤。通过本文的解析,读者可以更好地理解和解决Open judge C16H问题中的Magical Balls部分。 ... [详细]
  • 知识图谱——机器大脑中的知识库
    本文介绍了知识图谱在机器大脑中的应用,以及搜索引擎在知识图谱方面的发展。以谷歌知识图谱为例,说明了知识图谱的智能化特点。通过搜索引擎用户可以获取更加智能化的答案,如搜索关键词"Marie Curie",会得到居里夫人的详细信息以及与之相关的历史人物。知识图谱的出现引起了搜索引擎行业的变革,不仅美国的微软必应,中国的百度、搜狗等搜索引擎公司也纷纷推出了自己的知识图谱。 ... [详细]
  • sklearn数据集库中的常用数据集类型介绍
    本文介绍了sklearn数据集库中常用的数据集类型,包括玩具数据集和样本生成器。其中详细介绍了波士顿房价数据集,包含了波士顿506处房屋的13种不同特征以及房屋价格,适用于回归任务。 ... [详细]
  • 解决VS写C#项目导入MySQL数据源报错“You have a usable connection already”问题的正确方法
    本文介绍了在VS写C#项目导入MySQL数据源时出现报错“You have a usable connection already”的问题,并给出了正确的解决方法。详细描述了问题的出现情况和报错信息,并提供了解决该问题的步骤和注意事项。 ... [详细]
  • 也就是|小窗_卷积的特征提取与参数计算
    篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den ... [详细]
  • 利用Visual Basic开发SAP接口程序初探的方法与原理
    本文介绍了利用Visual Basic开发SAP接口程序的方法与原理,以及SAP R/3系统的特点和二次开发平台ABAP的使用。通过程序接口自动读取SAP R/3的数据表或视图,在外部进行处理和利用水晶报表等工具生成符合中国人习惯的报表样式。具体介绍了RFC调用的原理和模型,并强调本文主要不讨论SAP R/3函数的开发,而是针对使用SAP的公司的非ABAP开发人员提供了初步的接口程序开发指导。 ... [详细]
  • 深度学习中的Vision Transformer (ViT)详解
    本文详细介绍了深度学习中的Vision Transformer (ViT)方法。首先介绍了相关工作和ViT的基本原理,包括图像块嵌入、可学习的嵌入、位置嵌入和Transformer编码器等。接着讨论了ViT的张量维度变化、归纳偏置与混合架构、微调及更高分辨率等方面。最后给出了实验结果和相关代码的链接。本文的研究表明,对于CV任务,直接应用纯Transformer架构于图像块序列是可行的,无需依赖于卷积网络。 ... [详细]
  • 一句话解决高并发的核心原则
    本文介绍了解决高并发的核心原则,即将用户访问请求尽量往前推,避免访问CDN、静态服务器、动态服务器、数据库和存储,从而实现高性能、高并发、高可扩展的网站架构。同时提到了Google的成功案例,以及适用于千万级别PV站和亿级PV网站的架构层次。 ... [详细]
  • 本文介绍了Python语言程序设计中文件和数据格式化的操作,包括使用np.savetext保存文本文件,对文本文件和二进制文件进行统一的操作步骤,以及使用Numpy模块进行数据可视化编程的指南。同时还提供了一些关于Python的测试题。 ... [详细]
author-avatar
乖乖雯莉_775
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有